IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 6, JUNE 1998 863

A Fast Vector-Potential Method Using Tangentially
Continuous Vector Finite Elements

Romanus Dyczij-EdlingemvMember, IEEE,Guanghua Peng, and Jin-Fa Lé&smber, IEEE

_ Abstract— An efficient finite-element method for driven implementation, it is also unsatisfactory that the— V
time—harmonic wave-propagation problems is proposed. The approach requires several new types of volume and surface
Slloec'a' pr(c%ri/egtée'\i )Of tangﬁ.m";”y Cfom'mjlous vector f'“'tg integrals (for scalar—scalar and scalar-vector interactions)
elements 's) are utilized to formulate an ungauge . : o Sl
vector-potential scheme in terms of the field method plus one although its solution space Ior the electric field remains just
very sparse “gradient matrix” with two nonzero integer or the same as that of the bagitscheme on the same mesh.
pointer entries per row. The suggested formalism is intended for  In this paper, we propose an improved— V' formula-
use with iterative solvers. It combines the simplicity and modest tjon that overcomes much of the overhead mentioned above.
memory requirements of the field formulation with the_superior The new approach decreases memory consumption and per-
numerical convergence of the ungauged vector-potential SCheme'iteration FLOP's to levels very similar to 8 scheme. while
Index Terms—Electromagnetic analysis, finite-element meth- maintaining the fast convergence rates of the original method.
ods, iterative methods, numerical analysis. The key step in our formulation is an index representation
of the gradient operator in discretized space, which does not
|. INTRODUCTION require the explici_t storage of any matrix entries_ involving
O FORMULATE a driven wave-propagation proble mthe _sc_alaf potential. The associated (sub-)matrixector _
with tangentially continuous vector finite elementmultlpl|cat|0ns get bypassed by a moderate number of addi-
) . . . fions/subtractions, and the system matrix and right-hand side
(TVFEM.S)’ t'woﬂapprﬂoaches are usually con§|dered. the ﬂ.eT HS) vector reduce to those)gf tiEformulation O?/erall the
fgrmula’uonﬁ(mE or H) and the vector-potential approach (mlmplementation of the simplifie&—v scheme just requir;as an
A —V or T — 1, respectively). Which scheme is preferable

) . adgitional “gradient matrix” with two index or pointer entries
depends on whether the resulting equation systems are solve L .
r row and some maodifications in the PCG solver.

by direct or iterative methods. As long as the number The remainder of this paper is organized as follows. In

unknowns is in the low 10000’s, the memory and run timg . . : = >
. . ection Il, we give a short review of thie and A—V formula-
expenses for direct solvers are quite acceptable. In these catses

o . . ions, investigate the close relationship between both schemes,
the £ formulation is the method of choice. . . . L
. o . and introduce the gradient matri}7]. These findings are
However, practical applications often involve structures . . - .
used in Section Il to construct an efficient solver. Section IV

that are electrically large, highly inhomogeneous, or ver . .
) X . . resents some numerical examples, which demonstrate the
complicated in shape. For such configurations, large numb :
efficiency of the suggested approach.

of unknowns are unavoidable, and the computational costs

of complete matrix factorizations may become prohibitively II. THEORY

Ih'gg'.tlt rllfs turned”ct)ut [ﬁl.] _thatt _:hEt_formullatlon doehs no:h We consider a time—harmonic boundary-value problem
end itself very well to efficient iterative solvers such as VP) for the vector wave equation

preconditioned conjugate gradient (PCG) method. Fortunately,

the ungaugedd — V formulation has proven to converge V x (1] 71V x E)

much better [2], [3]; a fact that has also been verified in — k3[67,]E: 6, in Q (1)

an eddy-current context. [4]. A major reason for the unequal Hxi—H iven onl" 2

convergence characteristics of theand A — V' schemes was ﬁ X b .g H 2)
Exi1=0, givenonl'g =T'-Tg. (3)

pointed out in [3]. .
One obvious disadvantage of thé — V' method is that where( is a finite three-dimensional domain with boundary
the augmented scalar potential almost doubles the numipeand outward normal vectaf, [¢,] and [u,] stand for the
of nonzero entries in the system matrix [3], which leads t@lative permittivity and permeability tensors, akg and 7,
nearly twice as many floating operations (FLOP’s) per iteratiggr the free-space wavenumber and characteristic impedance,
step as thek formulation. With regard to the computerrespectively. The boundary condition (3) has been chosen
homogeneous to simplify notation later on.
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with basis functions¥; is plugged into the associated wealNote that the weighting functions are chosen fr({Wi} U
form of the BVP (1)—(3). The resulting set of Galerkin{V¢.}. In matrix form, (16) and (17) read

equations for the unknown coefficient vectér = col(e;) . .

can be written as [MAA MAV} [xA} = {TA} (18)

MT, Myy||Zv v
[Mgg] - e =7k (5) . . .
where ¥4 = col(a;) and Zy = col(yy) are the coefficient
where vectors associated with and V, respectively, and
Peely = [ AV X0 - [u] (T x 1)) (M) = [Me] (19)
— kg Wi - [e:]W; } dQ2 (6) Fa=7p (20)
O vk = —jk V& - (Hy x @) dl 21
P = —jkomo | Wi+ (Hy x i) dT. W Tn=dhom f Ve (Hox7) =)
'y

3 [May]a = —k? / Wi - [er]VE dQ2 (22)
B. A — V Formulation 4

Our formulation is based on a time-integrated vector- [Myy ] = —/fg/g Vi - [e]VE dQ. (23)
potential A and an electric scalar-potentilll given by

A VxA=—jwB (8) C. Relating thed — V to the E Formulation
V: A+VV = E. 9) As pointed out in [3], the primary goal of the ungauged
A — V formulation is to provide an alternative basjg; }
Now, the BVP (1)~(3) can be stated as for all gradients inV: = span {W;}, which is then utilized to
V x ([ue] 71V x E) _ k%[er](fﬂ vV) improve numeric convergence. Thus, we request
=0, inQ (10) [{EeV|E=Ve¢, ¢ H(Q: Tp)
(] ™'V x &) x 7 C{VV,V espan{&i}}. (24)
= —jkonoH: X , only (11)
and The most natural way of defining the bagi, } is implied by
Axi=0 the construction of TVFEM spaces themselves. Just add the
V=0 onlg. (12) associated set of nodal basis functions [8], [9]: linear functions

. for edge elements, quadratics g (curl), etc. This procedure
Note that (10)—(12) uniquely defing, while still gllowing for even yields the scalar space of smallest dimension possible:
gauge transformations between solution pdids, Vi) and

(A, Va) of the form {E€V|E=Vé,dec H(%TE)}
» ={VV,V € span{&}} (25)
10 _
¢ € Ho(6h L'e), ?/j ; éjjzd) 82 dim span{V¢;} = dim span{,} = K (26)

where K is the number of free nodes. From (25) and (9), it
is clear that the augmented scalar unknowns do not enlarge
Gauged versions can be found in [5]{7], but will not bgnhe solution space faE. Instead, the Galerkin equations (16)
considered here. To obtain a set of finite-element equatioggd (17) allow fork linear independent gauge transformations
we expand the potentials by (14), and the system matrix in (18) becomes singular with rank
> = deficiencyK . The fact that the nodal basis functions do not add
A= ZaiWi and V= Zw’“g’“ (15) any new information to the system suggests that there might be

where W; and¢;, stand for vector and scalar basis functiond Wy to formulate (18) without actually constructifly 4y

respectively, and apply a Galerkin process to (10)—(12) ggd [M‘I’V]' Intthe fIOHOW'”g' we will present the solution for
follows: édge elements only.

Due to equality in (25), every gradient ipan { V¢, } can
VWi:/[(VxWi)-[ur]_l(vxﬂ)—k%l/ffi-[er](ﬁ’—i-VV)]dQ also be expressed in terms of edge element basis functions.
Q For the associated coefficient vecto&s= col(e;) and ¢ =

= —jkon / Wi - (H, x @) dl (16) col (¢ ), this relation may be written as anx K matrix [G]
ot r ¢ representing the gradient operator in discretized space

YV —kg /Q Ve - [ J(A+ VV) d [G): ¢ — &): &) =[q]-¢. (27)

= —jkono | Véx - (Hy x @)dL. (17) To identify the elements of the “gradient matrifz], we
Ty consider a vector basis functid#; defined along edgémn}
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TABLE |

COMPARISON OF DIFFERENT FORMULATIONS
Model Formu- Unknowns Non- | Solver | Iter. CPU time | Memory
lation | vector | scalar ZEros in scc. in Mb
Microstrip | modif. | 20094 | 3852 | 235675 | ICCG 129 59.8 13.3
at02GHz | A-V DCG | 565 1385 9.1
orig. 20094 3852 | 407317 | ICCG 179 210.7 24.6
A-V DCG | 964 342.6 137
E 20094 01202806 | ICCG | 1576 653.6 12.8
DCG 6516 1131.5 8.5
WG bends | modif. | 32233 | 4880 | 327876 | ICCG 180 122.9 21.1
at 9.5 GHz | A—V DCG 962 342.6 13.7
orig. 32233 4880 | 553757 | ICCG 244 324.1 33.1
A-V DCG | 1003 536.7 144
E 32233 0 | 289517 | ICCG 2604 1661.7 21.8
DCG | 14222 3816.5 11.9
Patch modif. | 60369 6537 | 522698 | ICCG 1971 2262.7 43.4
antenna | A—V DCG | 8166 4710.2 22.6
at 7.5 GHz | orig. 60369 | 6537 | 822191 | ICCG | 2381 4041.2 52.3
A-V DCG | 8413 6848.2 23.8
FE 60369 0 | 480995 | ICCG | 13282 14609.4 37.0
DCG | 58007 27380.3 19.9

The iteration counts for the two potential methods were somewhat different, because the original scheme

used the total residual col(74,7v) as PCG termination criterion, whereas the new one evaluates [{rg||.

from nodem to noden. We have [8], [9] Since both sets of Galerkin equations, (16) and (17), are
actually in terms oft’ only, we may use (32) to simplify the

along edge{rmn} (28) equation system (18). For its first row, we immediately get

o N 1,
/edgeWi = {0, along all other edges

N o Mol 0 G- [2] = 7 @)
The line integral along edgémn} of a gradient fieldE = v
V¢ € V yields If we now replace the gradient weights in the Galerkin
n_ noo_ n . equations (17) by their edge element representations, the
/ E-dl =/ W, - dl :/ Vo -dl second row of (18) yields
m m m _"
— o = b GF - Dieel 11 61|54 | = (61 7. (34)
(29)

Finally, by combining (33) and (34), the matrix and RHS

i.e., the edge coefficient is uniquely defined by the differenceP&come

of the nodal coefficients associated with the starting and ending [MAA May

f— T . .
point, respectively. Thus, the gradient matrix has two and only ME, MVV} =0 Gl -[Mpe]- I G (39)

two nonzero entries per row, namel =
P ’ H =1 GI" (36)
[Glim =—-1 and [Gin = +1. (30) v
We now have an efficient way to state (9) in terms of finiteand for the complete matrix equation of the ungauged V
element coefficients scheme we get

and, in matrix form

. IIl. COMPUTER IMPLEMENTATION

ip=[I m-ﬁﬂ. (32)

v A. Matrix Representation
This result justifies our somewhat unusual definition of the The conventionald — V/ approach requires the explicit
potentials in (8) and (9). Since (32) will be evaluated in eaatonstruction of the matriceg\/y-y] and [M4y]. Since each
PCG iteration step, this equation ought to be kept as simptav of [M 41] couples the corresponding edge to all nodes of
as possible. the adjacent elements, the memory requirements for this matrix
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are very high. (We remark thaf\/y-v/] is far cheaper.) As a A0 e e e
result, the potential method may lead to almost twice as many : T ;‘;?fe, (mossurement)
nonzero matrix entries as the field formulation (see Table I).  -20 © ‘ Reiter (theory) ]

The present approach implements the ungauded V'
method in terms of thé scheme plus one gradient matrix
[G]. Since[G] is given by just2 - K indexes or pointers, the
additional memory requirements are very moderate.

Reflection Coefficient (dB)
A
(@]

B. Iterative Solver

Since the equations derived in Section Ill do not impose
any restrictions on the material properties, the formalism fully .5 L. . ‘ T .
covers the anisotropic case. For simplicity, however, we will 82 *2 equonay (@Hy 122
assume in the following thdfM/ g ] be symmetric and focus
on the PCG method only [10]. A detailed analysis of precoﬁ
ditioners for singular systems can be found in [11] and [12][15],

Our implementation uses either diagonal scaling or incom-
plete Cholesky decomposition as a preconditioner. In the latter
case, we compute and factorigefyy/] explicitly, but neglect e FE——— I.

the expensive coupling matripd/ 4y | -—- sr:mmwumw;ri
AS—— Hﬁhl‘!?r‘?:l

ig. 1 Two cascaded WG bends. Dimensioms= 22.86 mm, b = 10.16
= b, aopt = 0.976a, bopy = 0.874b. Reference results taken from

124

T
|:MAA MAv:| ~ |:LAA 0 } ) |:LAA 0 } (38)
Mya Myy 0  Lyy 0 Lyy

fion Coeffoiant {20}

where[L 4.4] and[Ly/] are lower triangular matrices. Shifting

techniques are applied to keep the factorization stable [3].
The greatest contributor to the computational costs of a sirg

gle PCG iteration is given by a matrikvector multiplication

of the type

Masa Mav } |:ﬁA } |:(7A }
|Pal Z |da 39
|:MVA Myv | |pv qv (39)

With (35), this operation is performed more efficiently as

Fig. 2. A microwave patch antenna. Reference results taken from [16].

* lteration: solve[L 4][L4]¥Z4 = 7&; solve [Ly][Lv]*

D = 1. . Dv 4 R IR R 5 . iR

pf pA+[G]_)p‘ (40) 7V—H?P—7E Z4+ TV -2V, /3—P/Pold; Pold: —p;
7s = [Mgg] - Pe (41) pA =Za +/3PA pv =2y +/3pv PE:= pa+ [G] - Py,
g =[G]" - qa. (42) qa:= [MEE] P = [G]" g = P/ (Pv -Gy +pa-

Ga); ¥p:= Tp+ape, Fp:= T —ady; Tyv:= v —ady;
Compared to the underlying scheme, the overhead is just  If (|[7z|l < ¢) exit;
2 . K additions plus2 - K subtractions. The following two * Output: solutionzg, residuali’s.
observations help improve the PCG algorithm even further.
The solution vector in terms of the electric fielt; can be IV. NUMERICAL RESULTS

updated efficiently in each iteration step without evaluating the 1o verify the efficiency of our approach, we have applied
potentials. The explicit calculation af, andZy is, therefore, the £ formulation, the basicd — V scheme, and the new
unnecessary. The residual of the underlyibgschemerz  formulation to the following test examples: A) two cascaded
is readily available throughout the iteration. Due to (33), Wgaveguide (WG) bends and B) a microwave patch antenna.
simply havery = 4. We usery, for the termination criterion. The finite-element models were realized as tetrahedra meshes
Since the resulting ICCG algonthm iS now written in termgyith perfectly matched layers (PML'’s) [13], [14] as port trun-
of [Mpg], &, and7, the simplifiedA— V" method may even cations and first-order absorbing boundary conditions (ABC's)
be regarded as afi scheme with a very specific preconditionegt interfaces to outer space. The norm of the relative residual
employing an explicit basis for gradient fields. We propose thg the PCG termination criterion was set to—10

following implementation: Figs. 1 and 2 show the geometries and results for Examples
* Input: equation setM pg], 7'g; preconditionef ], [L4], A and B, respectively. Since the solutions obtained by the
[Lv]; termination criterione; original and modifiedd — V' formulations differ in the last few

— — — (_)’

e Initialization: 7y = [G]? - 7g; g = P4 = 0, py = 0; digits only, no separate data are presented. Comparisons of the
Pold = 1.0; program run times are given in Figs. 3 and 4. Computational
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400.0 [ - e e ‘ 10° = — e =
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W S B - ]
300.0 |- 1 10° Sl ~*
. o—=0 original A—V, ICCG N v ] -2 —
k3 e—e modified A-V, ICCG 3 > e =T
g 2000 | ] g 10° c— Sl
= E 10 —
= = E =
o o
°© M 3 -~
100.0 - 1 7 ]
10° T = WG bends, modi. AV —|
&—© WG bends, orig. A~V —
A— WG bends, E 1
m— —= patch antenna, modif. A-V | —
®— —e patch antenna, orig. A-V [
0.0 L L ! L A B A— —a patch antenna, E
8 9 10 11 12 10" L T T 1
Frequency (GHz) 10 10
Number of unknowns
Fig. 3. CPU time versus frequency for the WG bends. Solver: ICCG. ional lexi
Workstation: HP 9000/C100, clock speed 120 MHz. Fig. 5. Computational complexity.

5000

i e e the simplest element type only, but its extension to schemes

©——0 original A=V, ICCG | of higher order appears to be straightforward.
o——e modified A~V, ICCG 1
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