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A Fast Vector-Potential Method Using Tangentially
Continuous Vector Finite Elements

Romanus Dyczij-Edlinger,Member, IEEE,Guanghua Peng, and Jin-Fa Lee,Member, IEEE

Abstract— An efficient finite-element method for driven
time–harmonic wave-propagation problems is proposed. The
special properties of tangentially continuous vector finite
elements (TVFEM’s) are utilized to formulate an ungauged
vector-potential scheme in terms of the field method plus one
very sparse “gradient matrix” with two nonzero integer or
pointer entries per row. The suggested formalism is intended for
use with iterative solvers. It combines the simplicity and modest
memory requirements of the field formulation with the superior
numerical convergence of the ungauged vector-potential scheme.

Index Terms—Electromagnetic analysis, finite-element meth-
ods, iterative methods, numerical analysis.

I. INTRODUCTION

TO FORMULATE a driven wave-propagation problem
with tangentially continuous vector finite elements

(TVFEM’s), two approaches are usually considered: the field
formulation (in or ) and the vector-potential approach (in

or , respectively). Which scheme is preferable
depends on whether the resulting equation systems are solved
by direct or iterative methods. As long as the number of
unknowns is in the low 10 000’s, the memory and run time
expenses for direct solvers are quite acceptable. In these cases,
the formulation is the method of choice.

However, practical applications often involve structures
that are electrically large, highly inhomogeneous, or very
complicated in shape. For such configurations, large numbers
of unknowns are unavoidable, and the computational costs
of complete matrix factorizations may become prohibitively
high. It has turned out [1] that the formulation does not
lend itself very well to efficient iterative solvers such as the
preconditioned conjugate gradient (PCG) method. Fortunately,
the ungauged formulation has proven to converge
much better [2], [3]; a fact that has also been verified in
an eddy-current context. [4]. A major reason for the unequal
convergence characteristics of theand schemes was
pointed out in [3].

One obvious disadvantage of the method is that
the augmented scalar potential almost doubles the number
of nonzero entries in the system matrix [3], which leads to
nearly twice as many floating operations (FLOP’s) per iteration
step as the formulation. With regard to the computer
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implementation, it is also unsatisfactory that the
approach requires several new types of volume and surface
integrals (for scalar–scalar and scalar–vector interactions),
although its solution space for the electric field remains just
the same as that of the basicscheme on the same mesh.

In this paper, we propose an improved formula-
tion that overcomes much of the overhead mentioned above.
The new approach decreases memory consumption and per-
iteration FLOP’s to levels very similar to the scheme, while
maintaining the fast convergence rates of the original method.
The key step in our formulation is an index representation
of the gradient operator in discretized space, which does not
require the explicit storage of any matrix entries involving
the scalar potential. The associated (sub-)matrixvector
multiplications get bypassed by a moderate number of addi-
tions/subtractions, and the system matrix and right-hand side
(RHS) vector reduce to those of theformulation. Overall, the
implementation of the simplified scheme just requires an
additional “gradient matrix” with two index or pointer entries
per row and some modifications in the PCG solver.

The remainder of this paper is organized as follows. In
Section II, we give a short review of the and formula-
tions, investigate the close relationship between both schemes,
and introduce the gradient matrix . These findings are
used in Section III to construct an efficient solver. Section IV
presents some numerical examples, which demonstrate the
efficiency of the suggested approach.

II. THEORY

We consider a time–harmonic boundary-value problem
(BVP) for the vector wave equation

in (1)

given on (2)

given on (3)

where is a finite three-dimensional domain with boundary
and outward normal vector, and stand for the

relative permittivity and permeability tensors, and and
for the free-space wavenumber and characteristic impedance,
respectively. The boundary condition (3) has been chosen
homogeneous to simplify notation later on.

A. Formulation

In the discretization process, a TVFEM approach for the
electric field

(4)
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with basis functions is plugged into the associated weak
form of the BVP (1)–(3). The resulting set of Galerkin
equations for the unknown coefficient vector
can be written as

(5)

where

(6)

(7)

B. Formulation

Our formulation is based on a time-integrated vector-
potential and an electric scalar-potential given by

(8)

(9)

Now, the BVP (1)–(3) can be stated as

in (10)

on (11)

and

on (12)

Note that (10)–(12) uniquely define, while still allowing for
gauge transformations between solution pairs and

of the form

(13)

(14)

Gauged versions can be found in [5]–[7], but will not be
considered here. To obtain a set of finite-element equations,
we expand the potentials by

and (15)

where and stand for vector and scalar basis functions,
respectively, and apply a Galerkin process to (10)–(12) as
follows:

(16)

(17)

Note that the weighting functions are chosen from
. In matrix form, (16) and (17) read

(18)

where col and col are the coefficient
vectors associated with and , respectively, and

(19)

(20)

(21)

(22)

(23)

C. Relating the to the Formulation

As pointed out in [3], the primary goal of the ungauged
formulation is to provide an alternative basis

for all gradients in , which is then utilized to
improve numeric convergence. Thus, we request

(24)

The most natural way of defining the basis is implied by
the construction of TVFEM spaces themselves. Just add the
associated set of nodal basis functions [8], [9]: linear functions
for edge elements, quadratics for , etc. This procedure
even yields the scalar space of smallest dimension possible:

(25)

(26)

where is the number of free nodes. From (25) and (9), it
is clear that the augmented scalar unknowns do not enlarge
the solution space for . Instead, the Galerkin equations (16)
and (17) allow for linear independent gauge transformations
(14), and the system matrix in (18) becomes singular with rank
deficiency . The fact that the nodal basis functions do not add
any new information to the system suggests that there might be
a way to formulate (18) without actually constructing
and . In the following, we will present the solution for
edge elements only.

Due to equality in (25), every gradient in can
also be expressed in terms of edge element basis functions.
For the associated coefficient vectors, and

, this relation may be written as an matrix
representing the gradient operator in discretized space

(27)

To identify the elements of the “gradient matrix” , we
consider a vector basis function defined along edge
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TABLE I
COMPARISON OF DIFFERENT FORMULATIONS

from node to node . We have [8], [9]

along edge
along all other edges

(28)

The line integral along edge of a gradient field
yields

(29)

i.e., the edge coefficient is uniquely defined by the difference
of the nodal coefficients associated with the starting and ending
point, respectively. Thus, the gradient matrix has two and only
two nonzero entries per row, namely

and (30)

We now have an efficient way to state (9) in terms of finite-
element coefficients

(31)

and, in matrix form

(32)

This result justifies our somewhat unusual definition of the
potentials in (8) and (9). Since (32) will be evaluated in each
PCG iteration step, this equation ought to be kept as simple
as possible.

Since both sets of Galerkin equations, (16) and (17), are
actually in terms of only, we may use (32) to simplify the
equation system (18). For its first row, we immediately get

(33)

If we now replace the gradient weights in the Galerkin
equations (17) by their edge element representations, the
second row of (18) yields

(34)

Finally, by combining (33) and (34), the matrix and RHS
become

(35)

(36)

and for the complete matrix equation of the ungauged
scheme we get

(37)

III. COMPUTER IMPLEMENTATION

A. Matrix Representation

The conventional approach requires the explicit
construction of the matrices and . Since each
row of couples the corresponding edge to all nodes of
the adjacent elements, the memory requirements for this matrix
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are very high. (We remark that is far cheaper.) As a
result, the potential method may lead to almost twice as many
nonzero matrix entries as the field formulation (see Table I).

The present approach implements the ungauged
method in terms of the scheme plus one gradient matrix

. Since is given by just indexes or pointers, the
additional memory requirements are very moderate.

B. Iterative Solver

Since the equations derived in Section III do not impose
any restrictions on the material properties, the formalism fully
covers the anisotropic case. For simplicity, however, we will
assume in the following that be symmetric and focus
on the PCG method only [10]. A detailed analysis of precon-
ditioners for singular systems can be found in [11] and [12].

Our implementation uses either diagonal scaling or incom-
plete Cholesky decomposition as a preconditioner. In the latter
case, we compute and factorize explicitly, but neglect
the expensive coupling matrix

(38)

where and are lower triangular matrices. Shifting
techniques are applied to keep the factorization stable [3].

The greatest contributor to the computational costs of a sin-
gle PCG iteration is given by a matrixvector multiplication
of the type

(39)

With (35), this operation is performed more efficiently as

(40)

(41)

(42)

Compared to the underlying scheme, the overhead is just
additions plus subtractions. The following two

observations help improve the PCG algorithm even further.
The solution vector in terms of the electric field can be
updated efficiently in each iteration step without evaluating the
potentials. The explicit calculation of and is, therefore,
unnecessary. The residual of the underlyingscheme
is readily available throughout the iteration. Due to (33), we
simply have . We use for the termination criterion.

Since the resulting ICCG algorithm is now written in terms
of , , and , the simplified method may even
be regarded as an scheme with a very specific preconditioner
employing an explicit basis for gradient fields. We propose the
following implementation:

• Input: equation set , ; preconditioner , ,
; termination criterion ;

• Initialization: ; , ;
;

Fig. 1. Two cascaded WG bends. Dimensions:a = 22:86 mm, b = 10:16

mm, l = b, aopt = 0:976a, bopt = 0:874b. Reference results taken from
[15].

Fig. 2. A microwave patch antenna. Reference results taken from [16].

• Iteration: solve ; solve
; ; ; ;

; ; ;
; ;

; ; ; ;
If exit;

• Output: solution , residual .

IV. NUMERICAL RESULTS

To verify the efficiency of our approach, we have applied
the formulation, the basic scheme, and the new
formulation to the following test examples: A) two cascaded
waveguide (WG) bends and B) a microwave patch antenna.
The finite-element models were realized as tetrahedra meshes
with perfectly matched layers (PML’s) [13], [14] as port trun-
cations and first-order absorbing boundary conditions (ABC’s)
at interfaces to outer space. The norm of the relative residual
in the PCG termination criterion was set to 10.

Figs. 1 and 2 show the geometries and results for Examples
A and B, respectively. Since the solutions obtained by the
original and modified formulations differ in the last few
digits only, no separate data are presented. Comparisons of the
program run times are given in Figs. 3 and 4. Computational
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Fig. 3. CPU time versus frequency for the WG bends. Solver: ICCG.
Workstation: HP 9000/C100, clock speed 120 MHz.

Fig. 4. CPU time versus frequency for the microwave patch antenna. Solver:
ICCG. Workstation: HP 9000/C100, clock speed 120 MHz.

parameters such as matrix sizes, iteration counts, and memory
requirements are listed in Table I. It can be seen that the new
approach achieves the shortest solution times and requires
significantly less storage than the original method.
Typical memory savings are in the order of 40%.

In the second set of experiments, we kept the operating
frequency constant and varied the mesh density. Fig. 5 il-
lustrates the dependence of CPU time on the number of
unknowns for the bent WG at 9.5 GHz and the patch antenna
at 7.5 GHz. Compared to the basic scheme, the
simplified formulation improves runtimes by a constant factor

. As expected, the computational complexity of both
implementations is the same.

V. CONCLUSION

A fast TVFEM solver has been presented. The proposed
formalism combines the simplicity and modest memory re-
quirements of the field formulation with the superior numerical
convergence of the ungauged vector-potential method. Several
numerical examples are given to validate the efficiency of the
suggested approach. The new method has been presented for

Fig. 5. Computational complexity.

the simplest element type only, but its extension to schemes
of higher order appears to be straightforward.
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